欧美vvv,亚洲第一成人在线,亚洲成人欧美日韩在线观看,日本猛少妇猛色XXXXX猛叫

新聞資訊

    柱狀圖又叫條形圖,是數據展示最重要的一類統計圖,數據分析結果展示中使用頻率非常高,各類統計軟件均能繪制。在R語言中r語言 條形圖上有數值,有很多包可繪制柱狀圖,比如包()函數和包()函數。 本文介紹包的()函數繪制柱狀圖。

    ()函數的基本用法:

    barplot(height,              # 柱子的高度
            names.arg = NULL,    # 柱子的名稱
            col = NULL,          # 柱子的填充顏色
            border = par("fg"),  # 柱子的輪廓顏色
            main = NULL,         # 柱狀圖主標題
            xlab = NULL,         # X軸標簽
            ylab = NULL,         # Y軸標簽
            xlim = NULL,         # X軸取值范圍
            ylim = NULL,         # Y軸取值范圍
            horiz = FALSE,       # 柱子是否為水平
            legend.text = NULL,  # 圖例文本
            beside = FALSE,      # 柱子是否為平行放置,用的頻率低,本文不介紹
           )
    

    柱子的高度是必須要的參數,數據類型為數值型向量或者矩陣。如果是一個數值型向量,那么向量中的每個數字即為每個柱子的高度,適用于繪制單個變量的柱狀圖;如果傳入一個矩陣,那么矩陣的每一列都對應一個柱子,柱子的高度為每一列的數字之和r語言 條形圖上有數值,每個柱子內部根據每一行數字的不同進行了劃分,適用于兩個變量交叉的柱狀圖。

    #同一界面顯示多張圖
    par(mfcol=c(1,2))
    # 傳入數值型向量
    vector = c(6, 4, 8) # 繪圖數據(數值型向量)
    barplot(height = vector)  # 繪制條形圖
    # 傳入矩陣
    matrix = matrix(1:4, ncol = 2, nrow = 2)  # 繪圖數據(矩陣)
    barplot(height = matrix)  # 繪制條形圖
    

    數值型向量圖(左)和矩陣圖(右)

    #修改柱子的名稱
    barplot(height = c(20, 48),  # 繪圖數據(數值型向量)
            names.arg = c('A', 'B'),  # 柱子名稱
    )
    

    添加柱子名稱的柱狀圖

    #修改柱子的顏色(填充和輪廓)
    barplot(height = c(20, 48),  # 繪圖數據(數值型向量)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = "white", #柱子顏色為白色
            border = "black" #柱子邊框為黑色
    )
    barplot(height = c(20, 48),  # 繪圖數據(數值型向量)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = "green", #柱子顏色為綠色
            border = "black" #柱子邊框為黑
    )
    ##修改堆積圖的顏色(填充和輪廓
    #修改柱子的顏色(填充和輪廓)
    barplot(height = matrix(1:4, ncol = 2, nrow = 2),  # 繪圖數據(矩陣)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = c('red', 'green'),  # 填充顏色
            border = 'black')  # 輪廓顏色
    barplot(height = matrix(1:4, ncol = 2, nrow = 2),  # 繪圖數據(矩陣)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = c('white', 'green'),  # 填充顏色
            border = 'black')  # 輪廓顏色
    

    白色和綠色填充的柱狀圖

    顏色填充的堆積柱狀圖

    barplot(height = c(20, 48),  # 繪圖數據(數值型向量)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = 'red',  # 填充顏色
            border = 'black', # 輪廓顏色
            xlab = '處理',  # X軸標題
            ylab = '物種豐富度(/m^2)')  # Y軸標題
    barplot(height = c(20, 48),  # 繪圖數據(數值型向量)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = 'green',  # 填充顏色
            border = 'black', # 輪廓顏色
            xlab = '處理',  # X軸標題
            ylab = '產量(kg/m^2)')  # Y軸標題
    

    物種豐富度和產量柱狀圖

    #修改X和Y軸坐標軸取值范圍
    barplot(height = c(20, 48),  # 繪圖數據(數值型向量)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = 'red',  # 填充顏色
            border = 'black', # 輪廓顏色
            xlab = '處理',  # X軸標題
            ylab = '物種豐富度(/m^2)', # Y軸標題
            ylim = c(0, 50))  # Y軸范圍
    barplot(height = c(20, 48),  # 繪圖數據(數值型向量)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = 'green',  # 填充顏色
            border = 'black', # 輪廓顏色
            xlab = '處理',  # X軸標題
            ylab = '產量(kg/m^2)', # Y軸標題
            ylim = c(0, 200))  # Y軸范圍) 
    

    修改X和Y軸坐標軸的柱狀圖

    #設置圖例的內容和位置
    barplot(height = c(50, 30),  # 繪圖數據(數值型向量)
            names.arg = c('Control', 'N addition'),  # 柱子名稱
            col = c('white','black'),  # 填充顏色
            border = 'black', # 輪廓顏色
            xlab = '處理',  # X軸標題
            ylab = '物種豐富度(/m^2)', # Y軸標題
            ylim = c(0, 50), # Y軸范圍
            legend.text = c('Control','N addition'),#設置圖例的內容
            args.legend = list(x = "topright")) #修改圖例的位置
    

    添加圖例的柱狀圖

    ()函數繪制柱狀圖較為美觀,但是存在一定的缺陷,比如圖例的位置只有固定的幾個參數(如下圖),無法自定義設置位置:

    圖例位置參數

    附官方示例代碼:

    Examples
    # Formula method
    barplot(GNP ~ Year, data = longley)
    barplot(cbind(Employed, Unemployed) ~ Year, data = longley)
    ## 3rd form of formula - 2 categories :
    op <- par(mfrow = 2:1, mgp = c(3,1,0)/2, mar = .1+c(3,3:1))
    summary(d.Titanic <- as.data.frame(Titanic))
    barplot(Freq ~ Class + Survived, data = d.Titanic,
            subset = Age == "Adult" & Sex == "Male",
            main = "barplot(Freq ~ Class + Survived, *)", ylab = "# {passengers}", legend = TRUE)
    # Corresponding table :
    (xt <- xtabs(Freq ~ Survived + Class + Sex, d.Titanic, subset = Age=="Adult"))
    # Alternatively, a mosaic plot :
    mosaicplot(xt[,,"Male"], main = "mosaicplot(Freq ~ Class + Survived, *)", color=TRUE)
    par(op)
    # Default method
    require(grDevices) # for colours
    tN <- table(Ni <- stats::rpois(100, lambda = 5))
    r <- barplot(tN, col = rainbow(20))
    #- type = "h" plotting *is* 'bar'plot
    lines(r, tN, type = "h", col = "red", lwd = 2)
    barplot(tN, space = 1.5, axisnames = FALSE,
            sub = "barplot(..., space= 1.5, axisnames = FALSE)")
    barplot(VADeaths, plot = FALSE)
    barplot(VADeaths, plot = FALSE, beside = TRUE)
    mp <- barplot(VADeaths) # default
    tot <- colMeans(VADeaths)
    text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")
    barplot(VADeaths, beside = TRUE,
            col = c("lightblue", "mistyrose", "lightcyan",
                    "lavender", "cornsilk"),
            legend = rownames(VADeaths), ylim = c(0, 100))
    title(main = "Death Rates in Virginia", font.main = 4)
    hh <- t(VADeaths)[, 5:1]
    mybarcol <- "gray20"
    mp <- barplot(hh, beside = TRUE,
            col = c("lightblue", "mistyrose",
                    "lightcyan", "lavender"),
            legend = colnames(VADeaths), ylim = c(0,100),
            main = "Death Rates in Virginia", font.main = 4,
            sub = "Faked upper 2*sigma error bars", col.sub = mybarcol,
            cex.names = 1.5)
    segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5)
    stopifnot(dim(mp) == dim(hh))  # corresponding matrices
    mtext(side = 1, at = colMeans(mp), line = -2,
          text = paste("Mean", formatC(colMeans(hh))), col = "red")
    # Bar shading example
    barplot(VADeaths, angle = 15+10*1:5, density = 20, col = "black",
            legend = rownames(VADeaths))
    title(main = list("Death Rates in Virginia", font = 4))
    # Border color
    barplot(VADeaths, border = "dark blue") 
    # Log scales (not much sense here)
    barplot(tN, col = heat.colors(12), log = "y")
    barplot(tN, col = gray.colors(20), log = "xy")
    # Legend location
    barplot(height = cbind(x = c(465, 91) / 465 * 100,
                           y = c(840, 200) / 840 * 100,
                           z = c(37, 17) / 37 * 100),
            beside = FALSE,
            width = c(465, 840, 37),
            col = c(1, 2),
            legend.text = c("A", "B"),
            args.legend = list(x = "topleft"))
    

    本文介紹包()函數繪制柱狀圖,下篇文章介紹包()函數繪制柱狀圖。

    參考文獻

    [1]

    [2] , R. A., , J. M. and Wilks, A. R. (1988) The New S . & /Cole.

    [3] , P. (2005) R . & Hall/CRC Press.

網站首頁   |    關于我們   |    公司新聞   |    產品方案   |    用戶案例   |    售后服務   |    合作伙伴   |    人才招聘   |   

友情鏈接: 餐飲加盟

地址:北京市海淀區    電話:010-     郵箱:@126.com

備案號:冀ICP備2024067069號-3 北京科技有限公司版權所有