angchain-ChatChat是現(xiàn)在用的很廣的一個(gè)大模型應(yīng)用框架,基于 ChatGLM 等大語言模型與 Langchain 等應(yīng)用框架實(shí)現(xiàn),開源、可離線部署的檢索增強(qiáng)生成(RAG)大模型知識(shí)庫項(xiàng)目。前一段時(shí)間用過幾次,哪個(gè)時(shí)候還叫Langchain-ChatGLM,感覺很不錯(cuò)。最近正好要做一個(gè)RAG系統(tǒng),就又裝了一次。這次因?yàn)槭窃赪indows上裝的,踩了點(diǎn)坑,記錄了一下。
GitHub: https://github.com/chatchat-space/Langchain-Chatchat
添加圖片注釋,不超過 140 字(可選)
想象一下,您有一個(gè)線性方程組和不等式系統(tǒng)。這樣的系統(tǒng)通常有許多可能的解決方案。線性規(guī)劃是一組數(shù)學(xué)和計(jì)算工具,可讓您找到該系統(tǒng)的特定解,該解對(duì)應(yīng)于某些其他線性函數(shù)的最大值或最小值。
混合整數(shù)線性規(guī)劃是 線性規(guī)劃 的擴(kuò)展。它處理至少一個(gè)變量采用離散整數(shù)而不是連續(xù)值的問題。盡管乍一看混合整數(shù)問題與連續(xù)變量問題相似,但它們?cè)陟`活性和精度方面具有顯著優(yōu)勢。
整數(shù)變量對(duì)于正確表示自然用整數(shù)表示的數(shù)量很重要,例如生產(chǎn)的飛機(jī)數(shù)量或服務(wù)的客戶數(shù)量。
一種特別重要的整數(shù)變量是 二進(jìn)制變量 。它只能取 零 或 一 的值,在做出是或否的決定時(shí)很有用,例如是否應(yīng)該建造工廠或者是否應(yīng)該打開或關(guān)閉機(jī)器。您還可以使用它們來模擬邏輯約束。
線性規(guī)劃是一種基本的優(yōu)化技術(shù),已在科學(xué)和數(shù)學(xué)密集型領(lǐng)域使用了數(shù)十年。它精確、相對(duì)快速,適用于一系列實(shí)際應(yīng)用。
混合整數(shù)線性規(guī)劃允許您克服線性規(guī)劃的許多限制。您可以使用分段線性函數(shù)近似非線性函數(shù)、使用半連續(xù)變量、模型邏輯約束等。它是一種計(jì)算密集型工具,但計(jì)算機(jī)硬件和軟件的進(jìn)步使其每天都更加適用。
通常,當(dāng)人們?cè)噲D制定和解決優(yōu)化問題時(shí),第一個(gè)問題是他們是否可以應(yīng)用線性規(guī)劃或混合整數(shù)線性規(guī)劃。
以下文章說明了線性規(guī)劃和混合整數(shù)線性規(guī)劃的一些用例:
隨著計(jì)算機(jī)能力的增強(qiáng)、算法的改進(jìn)以及更多用戶友好的軟件解決方案的出現(xiàn),線性規(guī)劃,尤其是混合整數(shù)線性規(guī)劃的重要性隨著時(shí)間的推移而增加。
解決線性規(guī)劃問題的基本方法稱為,它有多種變體。另一種流行的方法是。
混合整數(shù)線性規(guī)劃問題可以通過更復(fù)雜且計(jì)算量更大的方法來解決,例如,它在幕后使用線性規(guī)劃。這種方法的一些變體是,它涉及使用 切割平面 ,以及。
有幾種適用于線性規(guī)劃和混合整數(shù)線性規(guī)劃的合適且眾所周知的 Python 工具。其中一些是開源的,而另一些是專有的。您是否需要免費(fèi)或付費(fèi)工具取決于問題的規(guī)模和復(fù)雜性,以及對(duì)速度和靈活性的需求。
值得一提的是,幾乎所有廣泛使用的線性規(guī)劃和混合整數(shù)線性規(guī)劃庫都是以 Fortran 或 C 或 C++ 原生和編寫的。這是因?yàn)榫€性規(guī)劃需要對(duì)(通常很大)矩陣進(jìn)行計(jì)算密集型工作。此類庫稱為求解器。Python 工具只是求解器的包裝器。
Python 適合圍繞本機(jī)庫構(gòu)建包裝器,因?yàn)樗梢院芎玫嘏c C/C++ 配合使用。對(duì)于本教程,您不需要任何 C/C++(或 Fortran),但如果您想了解有關(guān)此酷功能的更多信息,請(qǐng)查看以下資源:
基本上,當(dāng)您定義和求解模型時(shí),您使用 Python 函數(shù)或方法調(diào)用低級(jí)庫,該庫執(zhí)行實(shí)際優(yōu)化工作并將解決方案返回給您的 Python 對(duì)象。
幾個(gè)免費(fèi)的 Python 庫專門用于與線性或混合整數(shù)線性規(guī)劃求解器交互:
在本教程中,您將使用SciPy和PuLP來定義和解決線性規(guī)劃問題。
在本節(jié)中,您將看到線性規(guī)劃問題的兩個(gè)示例:
您將在下一節(jié)中使用 Python 來解決這兩個(gè)問題。
考慮以下線性規(guī)劃問題:
你需要找到X和?使得紅色,藍(lán)色和黃色的不平等,以及不平等X ≥0和? ≥0,是滿意的。同時(shí),您的解決方案必須對(duì)應(yīng)于z的最大可能值。
您需要找到的自變量(在本例中為 x 和 y )稱為 決策變量 。要最大化或最小化的決策變量的函數(shù)(在本例中為 z) 稱為 目標(biāo)函數(shù) 、 成本函數(shù) 或僅稱為 目標(biāo) 。您需要滿足的 不等式 稱為 不等式約束 。您還可以在稱為 等式約束 的約束中使用方程。
這是您如何可視化問題的方法:
紅線代表的功能2 X + Y=20,和它上面的紅色區(qū)域示出了紅色不等式不滿足。同樣,藍(lán)線是函數(shù)?4 x + 5 y=10,藍(lán)色區(qū)域被禁止,因?yàn)樗`反了藍(lán)色不等式。黃線是 ? x + 2 y=?2,其下方的黃色區(qū)域是黃色不等式無效的地方。
如果您忽略紅色、藍(lán)色和黃色區(qū)域,則僅保留灰色區(qū)域。灰色區(qū)域的每個(gè)點(diǎn)都滿足所有約束,是問題的潛在解決方案。該區(qū)域稱為 可行域 ,其點(diǎn)為 可行解 。在這種情況下,有無數(shù)可行的解決方案。
您想最大化z。對(duì)應(yīng)于最大z的可行解是 最優(yōu)解 。如果您嘗試最小化目標(biāo)函數(shù),那么最佳解決方案將對(duì)應(yīng)于其可行的最小值。
請(qǐng)注意,z是線性的。你可以把它想象成一個(gè)三維空間中的平面。這就是為什么最優(yōu)解必須在可行區(qū)域的 頂點(diǎn) 或角上的原因。在這種情況下,最佳解決方案是紅線和藍(lán)線相交的點(diǎn),稍后您將看到。
有時(shí),可行區(qū)域的整個(gè)邊緣,甚至整個(gè)區(qū)域,都可以對(duì)應(yīng)相同的z值。在這種情況下,您有許多最佳解決方案。
您現(xiàn)在已準(zhǔn)備好使用綠色顯示的附加等式約束來擴(kuò)展問題:
方程式 ? x + 5 y=15,以綠色書寫,是新的。這是一個(gè)等式約束。您可以通過向上一張圖像添加相應(yīng)的綠線來將其可視化:
現(xiàn)在的解決方案必須滿足綠色等式,因此可行區(qū)域不再是整個(gè)灰色區(qū)域。它是綠線從與藍(lán)線的交點(diǎn)到與紅線的交點(diǎn)穿過灰色區(qū)域的部分。后一點(diǎn)是解決方案。
如果插入x的所有值都必須是整數(shù)的要求,那么就會(huì)得到一個(gè)混合整數(shù)線性規(guī)劃問題,可行解的集合又會(huì)發(fā)生變化:
您不再有綠線,只有沿線的x值為整數(shù)的點(diǎn)。可行解是灰色背景上的綠點(diǎn),此時(shí)最優(yōu)解離紅線最近。
這三個(gè)例子說明了 可行的線性規(guī)劃問題 ,因?yàn)樗鼈兙哂杏薪缈尚袇^(qū)域和有限解。
如果沒有解,線性規(guī)劃問題是 不可行的 。當(dāng)沒有解決方案可以同時(shí)滿足所有約束時(shí),通常會(huì)發(fā)生這種情況。
例如,考慮如果添加約束x + y ≤ ?1會(huì)發(fā)生什么。那么至少有一個(gè)決策變量(x或y)必須是負(fù)數(shù)。這與給定的約束x ≥ 0 和y ≥ 0相沖突。這樣的系統(tǒng)沒有可行的解決方案,因此稱為不可行的。
另一個(gè)示例是添加與綠線平行的第二個(gè)等式約束。這兩行沒有共同點(diǎn),因此不會(huì)有滿足這兩個(gè)約束的解決方案。
一個(gè)線性規(guī)劃問題是 無界的 ,如果它的可行區(qū)域是無界,將溶液不是有限。這意味著您的變量中至少有一個(gè)不受約束,可以達(dá)到正無窮大或負(fù)無窮大,從而使目標(biāo)也無限大。
例如,假設(shè)您采用上面的初始問題并刪除紅色和黃色約束。從問題中刪除約束稱為 放松 問題。在這種情況下,x和y不會(huì)在正側(cè)有界。您可以將它們?cè)黾拥秸裏o窮大,從而產(chǎn)生無限大的z值。
在前面的部分中,您研究了一個(gè)與任何實(shí)際應(yīng)用程序無關(guān)的抽象線性規(guī)劃問題。在本小節(jié)中,您將找到與制造業(yè)資源分配相關(guān)的更具體和實(shí)用的優(yōu)化問題。
假設(shè)一家工廠生產(chǎn)四種不同的產(chǎn)品,第一種產(chǎn)品的日產(chǎn)量為x ?,第二種產(chǎn)品的產(chǎn)量為x 2,依此類推。目標(biāo)是確定每種產(chǎn)品的利潤最大化日產(chǎn)量,同時(shí)牢記以下條件:
數(shù)學(xué)模型可以這樣定義:
目標(biāo)函數(shù)(利潤)在條件 1 中定義。人力約束遵循條件 2。對(duì)原材料 A 和 B 的約束可以從條件 3 和條件 4 中通過對(duì)每種產(chǎn)品的原材料需求求和得出。
最后,產(chǎn)品數(shù)量不能為負(fù),因此所有決策變量必須大于或等于零。
與前面的示例不同,您無法方便地將其可視化,因?yàn)樗兴膫€(gè)決策變量。但是,無論問題的維度如何,原理都是相同的。
在本教程中,您將使用兩個(gè)Python 包來解決上述線性規(guī)劃問題:
SciPy 設(shè)置起來很簡單。安裝后,您將擁有開始所需的一切。它的子包 scipy.optimize 可用于線性和非線性優(yōu)化。
PuLP 允許您選擇求解器并以更自然的方式表述問題。PuLP 使用的默認(rèn)求解器是COIN-OR Branch and Cut Solver (CBC)。它連接到用于線性松弛的COIN-OR 線性規(guī)劃求解器 (CLP)和用于切割生成的COIN-OR 切割生成器庫 (CGL)。
另一個(gè)偉大的開源求解器是GNU 線性規(guī)劃工具包 (GLPK)。一些著名且非常強(qiáng)大的商業(yè)和專有解決方案是Gurobi、CPLEX和XPRESS。
除了在定義問題時(shí)提供靈活性和運(yùn)行各種求解器的能力外,PuLP 使用起來不如 Pyomo 或 CVXOPT 等替代方案復(fù)雜,后者需要更多的時(shí)間和精力來掌握。
要學(xué)習(xí)本教程,您需要安裝 SciPy 和 PuLP。下面的示例使用 SciPy 1.4.1 版和 PuLP 2.1 版。
您可以使用pip以下方法安裝兩者:
$ python -m pip install -U "scipy==1.4.*" "pulp==2.1"
您可能需要運(yùn)行pulptest或sudo pulptest啟用 PuLP 的默認(rèn)求解器,尤其是在您使用 Linux 或 Mac 時(shí):
$ pulptest
或者,您可以下載、安裝和使用 GLPK。它是免費(fèi)和開源的,適用于 Windows、MacOS 和 Linux。在本教程的后面部分,您將看到如何將 GLPK(除了 CBC)與 PuLP 一起使用。
在 Windows 上,您可以下載檔案并運(yùn)行安裝文件。
在 MacOS 上,您可以使用 Homebrew:
$ brew install glpk
在 Debian 和 Ubuntu 上,使用apt來安裝glpk和glpk-utils:
$ sudo apt install glpk glpk-utils
在Fedora,使用dnf具有g(shù)lpk-utils:
$ sudo dnf install glpk-utils
您可能還會(huì)發(fā)現(xiàn)conda對(duì)安裝 GLPK 很有用:
$ conda install -c conda-forge glpk
安裝完成后,可以查看GLPK的版本:
$ glpsol --version
有關(guān)詳細(xì)信息,請(qǐng)參閱 GLPK 關(guān)于使用Windows 可執(zhí)行文件和Linux 軟件包進(jìn)行安裝的教程。
在本節(jié)中,您將學(xué)習(xí)如何使用 SciPy優(yōu)化和求根庫進(jìn)行線性規(guī)劃。
要使用 SciPy 定義和解決優(yōu)化問題,您需要導(dǎo)入scipy.optimize.linprog():
>>>
>>> from scipy.optimize import linprog
現(xiàn)在您已經(jīng)linprog()導(dǎo)入,您可以開始優(yōu)化。
讓我們首先解決上面的線性規(guī)劃問題:
linprog()僅解決最小化(而非最大化)問題,并且不允許具有大于或等于符號(hào) (≥) 的不等式約束。要解決這些問題,您需要在開始優(yōu)化之前修改您的問題:
引入這些更改后,您將獲得一個(gè)新系統(tǒng):
該系統(tǒng)與原始系統(tǒng)等效,并且將具有相同的解決方案。應(yīng)用這些更改的唯一原因是克服 SciPy 與問題表述相關(guān)的局限性。
下一步是定義輸入值:
>>>
>>> obj=[-1, -2]
>>> # ─┬ ─┬
>>> # │ └┤ Coefficient for y
>>> # └────┤ Coefficient for x
>>> lhs_ineq=[[ 2, 1], # Red constraint left side
... [-4, 5], # Blue constraint left side
... [ 1, -2]] # Yellow constraint left side
>>> rhs_ineq=[20, # Red constraint right side
... 10, # Blue constraint right side
... 2] # Yellow constraint right side
>>> lhs_eq=[[-1, 5]] # Green constraint left side
>>> rhs_eq=[15] # Green constraint right side
您將上述系統(tǒng)中的值放入適當(dāng)?shù)牧斜怼⒃M或NumPy 數(shù)組中:
注意:請(qǐng)注意行和列的順序!
約束左側(cè)和右側(cè)的行順序必須相同。每一行代表一個(gè)約束。
來自目標(biāo)函數(shù)和約束左側(cè)的系數(shù)的順序必須匹配。每列對(duì)應(yīng)一個(gè)決策變量。
下一步是以與系數(shù)相同的順序定義每個(gè)變量的界限。在這種情況下,它們都在零和正無窮大之間:
>>>
>>> bnd=[(0, float("inf")), # Bounds of x
... (0, float("inf"))] # Bounds of y
此語句是多余的,因?yàn)閘inprog()默認(rèn)情況下采用這些邊界(零到正無窮大)。
注:相反的float("inf"),你可以使用math.inf,numpy.inf或scipy.inf。
最后,是時(shí)候優(yōu)化和解決您感興趣的問題了。你可以這樣做linprog():
>>>
>>> opt=linprog(c=obj, A_ub=lhs_ineq, b_ub=rhs_ineq,
... A_eq=lhs_eq, b_eq=rhs_eq, bounds=bnd,
... method="revised simplex")
>>> opt
con: array([0.])
fun: -16.818181818181817
message: 'Optimization terminated successfully.'
nit: 3
slack: array([ 0. , 18.18181818, 3.36363636])
status: 0
success: True
x: array([7.72727273, 4.54545455])
參數(shù)c是指來自目標(biāo)函數(shù)的系數(shù)。A_ub和b_ub分別與不等式約束左邊和右邊的系數(shù)有關(guān)。同樣,A_eq并b_eq參考等式約束。您可以使用bounds提供決策變量的下限和上限。
您可以使用該參數(shù)method來定義要使用的線性規(guī)劃方法。有以下三種選擇:
linprog() 返回具有以下屬性的數(shù)據(jù)結(jié)構(gòu):
您可以分別訪問這些值:
>>>
>>> opt.fun
-16.818181818181817
>>> opt.success
True
>>> opt.x
array([7.72727273, 4.54545455])
這就是您獲得優(yōu)化結(jié)果的方式。您還可以以圖形方式顯示它們:
如前所述,線性規(guī)劃問題的最優(yōu)解位于可行區(qū)域的頂點(diǎn)。在這種情況下,可行區(qū)域只是藍(lán)線和紅線之間的綠線部分。最優(yōu)解是代表綠線和紅線交點(diǎn)的綠色方塊。
如果要排除相等(綠色)約束,只需刪除參數(shù)A_eq并b_eq從linprog()調(diào)用中刪除:
>>>
>>> opt=linprog(c=obj, A_ub=lhs_ineq, b_ub=rhs_ineq, bounds=bnd,
... method="revised simplex")
>>> opt
con: array([], dtype=float64)
fun: -20.714285714285715
message: 'Optimization terminated successfully.'
nit: 2
slack: array([0. , 0. , 9.85714286])
status: 0
success: True
x: array([6.42857143, 7.14285714]))
解決方案與前一種情況不同。你可以在圖表上看到:
在這個(gè)例子中,最優(yōu)解是紅色和藍(lán)色約束相交的可行(灰色)區(qū)域的紫色頂點(diǎn)。其他頂點(diǎn),如黃色頂點(diǎn),具有更高的目標(biāo)函數(shù)值。
您可以使用 SciPy 來解決前面部分所述的資源分配問題:
和前面的例子一樣,你需要從上面的問題中提取必要的向量和矩陣,將它們作為參數(shù)傳遞給.linprog(),然后得到結(jié)果:
>>>
>>> obj=[-20, -12, -40, -25]
>>> lhs_ineq=[[1, 1, 1, 1], # Manpower
... [3, 2, 1, 0], # Material A
... [0, 1, 2, 3]] # Material B
>>> rhs_ineq=[ 50, # Manpower
... 100, # Material A
... 90] # Material B
>>> opt=linprog(c=obj, A_ub=lhs_ineq, b_ub=rhs_ineq,
... method="revised simplex")
>>> opt
con: array([], dtype=float64)
fun: -1900.0
message: 'Optimization terminated successfully.'
nit: 2
slack: array([ 0., 40., 0.])
status: 0
success: True
x: array([ 5., 0., 45., 0.])
結(jié)果告訴您最大利潤是1900并且對(duì)應(yīng)于x ?=5 和x ?=45。在給定條件下生產(chǎn)第二和第四個(gè)產(chǎn)品是沒有利潤的。您可以在這里得出幾個(gè)有趣的結(jié)論:
opt.statusis0和opt.successis True,說明優(yōu)化問題成功求解,最優(yōu)可行解。
SciPy 的線性規(guī)劃功能主要用于較小的問題。對(duì)于更大和更復(fù)雜的問題,您可能會(huì)發(fā)現(xiàn)其他庫更適合,原因如下:
幸運(yùn)的是,Python 生態(tài)系統(tǒng)為線性編程提供了幾種替代解決方案,這些解決方案對(duì)于更大的問題非常有用。其中之一是 PuLP,您將在下一節(jié)中看到它的實(shí)際應(yīng)用。
PuLP 具有比 SciPy 更方便的線性編程 API。您不必在數(shù)學(xué)上修改您的問題或使用向量和矩陣。一切都更干凈,更不容易出錯(cuò)。
像往常一樣,您首先導(dǎo)入您需要的內(nèi)容:
from pulp import LpMaximize, LpProblem, LpStatus, lpSum, LpVariable
現(xiàn)在您已經(jīng)導(dǎo)入了 PuLP,您可以解決您的問題。
您現(xiàn)在將使用 PuLP 解決此系統(tǒng):
第一步是初始化一個(gè)實(shí)例LpProblem來表示你的模型:
# Create the model
model=LpProblem(name="small-problem", sense=LpMaximize)
您可以使用該sense參數(shù)來選擇是執(zhí)行最小化(LpMinimize或1,這是默認(rèn)值)還是最大化(LpMaximize或-1)。這個(gè)選擇會(huì)影響你的問題的結(jié)果。
一旦有了模型,就可以將決策變量定義為LpVariable類的實(shí)例:
# Initialize the decision variables
x=LpVariable(name="x", lowBound=0)
y=LpVariable(name="y", lowBound=0)
您需要提供下限,lowBound=0因?yàn)槟J(rèn)值為負(fù)無窮大。該參數(shù)upBound定義了上限,但您可以在此處省略它,因?yàn)樗J(rèn)為正無窮大。
可選參數(shù)cat定義決策變量的類別。如果您使用的是連續(xù)變量,則可以使用默認(rèn)值"Continuous"。
您可以使用變量x和y創(chuàng)建表示線性表達(dá)式和約束的其他 PuLP 對(duì)象:
>>>
>>> expression=2 * x + 4 * y
>>> type(expression)
<class 'pulp.pulp.LpAffineExpression'>
>>> constraint=2 * x + 4 * y >=8
>>> type(constraint)
<class 'pulp.pulp.LpConstraint'>
當(dāng)您將決策變量與標(biāo)量相乘或構(gòu)建多個(gè)決策變量的線性組合時(shí),您會(huì)得到一個(gè)pulp.LpAffineExpression代表線性表達(dá)式的實(shí)例。
注意:您可以增加或減少變量或表達(dá)式,你可以乘他們常數(shù),因?yàn)榧垵{類實(shí)現(xiàn)一些Python的特殊方法,即模擬數(shù)字類型一樣__add__(),__sub__()和__mul__()。這些方法用于像定制運(yùn)營商的行為+,-和*。
類似地,您可以將線性表達(dá)式、變量和標(biāo)量與運(yùn)算符==、<=、 或>=以獲取表示模型線性約束的紙漿.LpConstraint實(shí)例。
注:也有可能與豐富的比較方法來構(gòu)建的約束.__eq__(),.__le__()以及.__ge__()定義了運(yùn)營商的行為==,<=和>=。
考慮到這一點(diǎn),下一步是創(chuàng)建約束和目標(biāo)函數(shù)并將它們分配給您的模型。您不需要?jiǎng)?chuàng)建列表或矩陣。只需編寫 Python 表達(dá)式并使用+=運(yùn)算符將它們附加到模型中:
# Add the constraints to the model
model +=(2 * x + y <=20, "red_constraint")
model +=(4 * x - 5 * y >=-10, "blue_constraint")
model +=(-x + 2 * y >=-2, "yellow_constraint")
model +=(-x + 5 * y==15, "green_constraint")
在上面的代碼中,您定義了包含約束及其名稱的元組。LpProblem允許您通過將約束指定為元組來向模型添加約束。第一個(gè)元素是一個(gè)LpConstraint實(shí)例。第二個(gè)元素是該約束的可讀名稱。
設(shè)置目標(biāo)函數(shù)非常相似:
# Add the objective function to the model
obj_func=x + 2 * y
model +=obj_func
或者,您可以使用更短的符號(hào):
# Add the objective function to the model
model +=x + 2 * y
現(xiàn)在您已經(jīng)添加了目標(biāo)函數(shù)并定義了模型。
注意:您可以使用運(yùn)算符將?約束或目標(biāo)附加到模型中,+=因?yàn)樗念怢pProblem實(shí)現(xiàn)了特殊方法.__iadd__(),該方法用于指定 的行為+=。
對(duì)于較大的問題,lpSum()與列表或其他序列一起使用通常比重復(fù)+運(yùn)算符更方便。例如,您可以使用以下語句將目標(biāo)函數(shù)添加到模型中:
# Add the objective function to the model
model +=lpSum([x, 2 * y])
它產(chǎn)生與前一條語句相同的結(jié)果。
您現(xiàn)在可以看到此模型的完整定義:
>>>
>>> model
small-problem:
MAXIMIZE
1*x + 2*y + 0
SUBJECT TO
red_constraint: 2 x + y <=20
blue_constraint: 4 x - 5 y >=-10
yellow_constraint: - x + 2 y >=-2
green_constraint: - x + 5 y=15
VARIABLES
x Continuous
y Continuous
模型的字符串表示包含所有相關(guān)數(shù)據(jù):變量、約束、目標(biāo)及其名稱。
注意:字符串表示是通過定義特殊方法構(gòu)建的.__repr__()。有關(guān) 的更多詳細(xì)信息.__repr__(),請(qǐng)查看Pythonic OOP 字符串轉(zhuǎn)換:__repr__vs__str__ .
最后,您已準(zhǔn)備好解決問題。你可以通過調(diào)用.solve()你的模型對(duì)象來做到這一點(diǎn)。如果要使用默認(rèn)求解器 (CBC),則不需要傳遞任何參數(shù):
# Solve the problem
status=model.solve()
.solve()調(diào)用底層求解器,修改model對(duì)象,并返回解決方案的整數(shù)狀態(tài),1如果找到了最優(yōu)解。有關(guān)其余狀態(tài)代碼,請(qǐng)參閱LpStatus[]。
你可以得到優(yōu)化結(jié)果作為 的屬性model。該函數(shù)value()和相應(yīng)的方法.value()返回屬性的實(shí)際值:
>>>
>>> print(f"status: {model.status}, {LpStatus[model.status]}")
status: 1, Optimal
>>> print(f"objective: {model.objective.value()}")
objective: 16.8181817
>>> for var in model.variables():
... print(f"{var.name}: {var.value()}")
...
x: 7.7272727
y: 4.5454545
>>> for name, constraint in model.constraints.items():
... print(f"{name}: {constraint.value()}")
...
red_constraint: -9.99999993922529e-08
blue_constraint: 18.181818300000003
yellow_constraint: 3.3636362999999996
green_constraint: -2.0000000233721948e-07)
model.objective持有目標(biāo)函數(shù)model.constraints的值,包含松弛變量的值,以及對(duì)象x和y具有決策變量的最優(yōu)值。model.variables()返回一個(gè)包含決策變量的列表:
>>>
>>> model.variables()
[x, y]
>>> model.variables()[0] is x
True
>>> model.variables()[1] is y
True
如您所見,此列表包含使用 的構(gòu)造函數(shù)創(chuàng)建的確切對(duì)象LpVariable。
結(jié)果與您使用 SciPy 獲得的結(jié)果大致相同。
注意:注意這個(gè)方法.solve()——它會(huì)改變對(duì)象的狀態(tài),x并且y!
您可以通過調(diào)用查看使用了哪個(gè)求解器.solver:
>>>
>>> model.solver
<pulp.apis.coin_api.PULP_CBC_CMD object at 0x7f60aea19e50>
輸出通知您求解器是 CBC。您沒有指定求解器,因此 PuLP 調(diào)用了默認(rèn)求解器。
如果要運(yùn)行不同的求解器,則可以將其指定為 的參數(shù).solve()。例如,如果您想使用 GLPK 并且已經(jīng)安裝了它,那么您可以solver=GLPK(msg=False)在最后一行使用。請(qǐng)記住,您還需要導(dǎo)入它:
from pulp import GLPK
現(xiàn)在你已經(jīng)導(dǎo)入了 GLPK,你可以在里面使用它.solve():
# Create the model
model=LpProblem(name="small-problem", sense=LpMaximize)
# Initialize the decision variables
x=LpVariable(name="x", lowBound=0)
y=LpVariable(name="y", lowBound=0)
# Add the constraints to the model
model +=(2 * x + y <=20, "red_constraint")
model +=(4 * x - 5 * y >=-10, "blue_constraint")
model +=(-x + 2 * y >=-2, "yellow_constraint")
model +=(-x + 5 * y==15, "green_constraint")
# Add the objective function to the model
model +=lpSum([x, 2 * y])
# Solve the problem
status=model.solve(solver=GLPK(msg=False))
該msg參數(shù)用于顯示來自求解器的信息。msg=False禁用顯示此信息。如果要包含信息,則只需省略msg或設(shè)置msg=True。
您的模型已定義并求解,因此您可以按照與前一種情況相同的方式檢查結(jié)果:
>>>
>>> print(f"status: {model.status}, {LpStatus[model.status]}")
status: 1, Optimal
>>> print(f"objective: {model.objective.value()}")
objective: 16.81817
>>> for var in model.variables():
... print(f"{var.name}: {var.value()}")
...
x: 7.72727
y: 4.54545
>>> for name, constraint in model.constraints.items():
... print(f"{name}: {constraint.value()}")
...
red_constraint: -1.0000000000509601e-05
blue_constraint: 18.181830000000005
yellow_constraint: 3.3636299999999997
green_constraint: -2.000000000279556e-05
使用 GLPK 得到的結(jié)果與使用 SciPy 和 CBC 得到的結(jié)果幾乎相同。
一起來看看這次用的是哪個(gè)求解器:
>>>
>>> model.solver
<pulp.apis.glpk_api.GLPK_CMD object at 0x7f60aeb04d50>
正如您在上面用突出顯示的語句定義的那樣model.solve(solver=GLPK(msg=False)),求解器是 GLPK。
您還可以使用 PuLP 來解決混合整數(shù)線性規(guī)劃問題。要定義整數(shù)或二進(jìn)制變量,只需傳遞cat="Integer"或cat="Binary"到LpVariable。其他一切都保持不變:
# Create the model
model=LpProblem(name="small-problem", sense=LpMaximize)
# Initialize the decision variables: x is integer, y is continuous
x=LpVariable(name="x", lowBound=0, cat="Integer")
y=LpVariable(name="y", lowBound=0)
# Add the constraints to the model
model +=(2 * x + y <=20, "red_constraint")
model +=(4 * x - 5 * y >=-10, "blue_constraint")
model +=(-x + 2 * y >=-2, "yellow_constraint")
model +=(-x + 5 * y==15, "green_constraint")
# Add the objective function to the model
model +=lpSum([x, 2 * y])
# Solve the problem
status=model.solve()
在本例中,您有一個(gè)整數(shù)變量并獲得與之前不同的結(jié)果:
>>>
>>> print(f"status: {model.status}, {LpStatus[model.status]}")
status: 1, Optimal
>>> print(f"objective: {model.objective.value()}")
objective: 15.8
>>> for var in model.variables():
... print(f"{var.name}: {var.value()}")
...
x: 7.0
y: 4.4
>>> for name, constraint in model.constraints.items():
... print(f"{name}: {constraint.value()}")
...
red_constraint: -1.5999999999999996
blue_constraint: 16.0
yellow_constraint: 3.8000000000000007
green_constraint: 0.0)
>>> model.solver
<pulp.apis.coin_api.PULP_CBC_CMD at 0x7f0f005c6210>
Nowx是一個(gè)整數(shù),如模型中所指定。(從技術(shù)上講,它保存一個(gè)小數(shù)點(diǎn)后為零的浮點(diǎn)值。)這一事實(shí)改變了整個(gè)解決方案。讓我們?cè)趫D表上展示這一點(diǎn):
如您所見,最佳解決方案是灰色背景上最右邊的綠點(diǎn)。這是兩者的最大價(jià)值的可行的解決方案x和y,給它的最大目標(biāo)函數(shù)值。
GLPK 也能夠解決此類問題。
現(xiàn)在你可以使用 PuLP 來解決上面的資源分配問題:
定義和解決問題的方法與前面的示例相同:
# Define the model
model=LpProblem(name="resource-allocation", sense=LpMaximize)
# Define the decision variables
x={i: LpVariable(name=f"x{i}", lowBound=0) for i in range(1, 5)}
# Add constraints
model +=(lpSum(x.values()) <=50, "manpower")
model +=(3 * x[1] + 2 * x[2] + x[3] <=100, "material_a")
model +=(x[2] + 2 * x[3] + 3 * x[4] <=90, "material_b")
# Set the objective
model +=20 * x[1] + 12 * x[2] + 40 * x[3] + 25 * x[4]
# Solve the optimization problem
status=model.solve()
# Get the results
print(f"status: {model.status}, {LpStatus[model.status]}")
print(f"objective: {model.objective.value()}")
for var in x.values():
print(f"{var.name}: {var.value()}")
for name, constraint in model.constraints.items():
print(f"{name}: {constraint.value()}")
在這種情況下,您使用字典 x來存儲(chǔ)所有決策變量。這種方法很方便,因?yàn)樽值淇梢詫Q策變量的名稱或索引存儲(chǔ)為鍵,將相應(yīng)的LpVariable對(duì)象存儲(chǔ)為值。列表或元組的LpVariable實(shí)例可以是有用的。
上面的代碼產(chǎn)生以下結(jié)果:
status: 1, Optimal
objective: 1900.0
x1: 5.0
x2: 0.0
x3: 45.0
x4: 0.0
manpower: 0.0
material_a: -40.0
material_b: 0.0
如您所見,該解決方案與使用 SciPy 獲得的解決方案一致。最有利可圖的解決方案是每天生產(chǎn)5.0第一件產(chǎn)品和45.0第三件產(chǎn)品。
讓我們把這個(gè)問題變得更復(fù)雜和有趣。假設(shè)由于機(jī)器問題,工廠無法同時(shí)生產(chǎn)第一種和第三種產(chǎn)品。在這種情況下,最有利可圖的解決方案是什么?
現(xiàn)在您有另一個(gè)邏輯約束:如果x ? 為正數(shù),則x ? 必須為零,反之亦然。這是二元決策變量非常有用的地方。您將使用兩個(gè)二元決策變量y ? 和y ?,它們將表示是否生成了第一個(gè)或第三個(gè)產(chǎn)品:
1model=LpProblem(name="resource-allocation", sense=LpMaximize)
2
3# Define the decision variables
4x={i: LpVariable(name=f"x{i}", lowBound=0) for i in range(1, 5)}
5y={i: LpVariable(name=f"y{i}", cat="Binary") for i in (1, 3)}
6
7# Add constraints
8model +=(lpSum(x.values()) <=50, "manpower")
9model +=(3 * x[1] + 2 * x[2] + x[3] <=100, "material_a")
10model +=(x[2] + 2 * x[3] + 3 * x[4] <=90, "material_b")
11
12M=100
13model +=(x[1] <=y[1] * M, "x1_constraint")
14model +=(x[3] <=y[3] * M, "x3_constraint")
15model +=(y[1] + y[3] <=1, "y_constraint")
16
17# Set objective
18model +=20 * x[1] + 12 * x[2] + 40 * x[3] + 25 * x[4]
19
20# Solve the optimization problem
21status=model.solve()
22
23print(f"status: {model.status}, {LpStatus[model.status]}")
24print(f"objective: {model.objective.value()}")
25
26for var in model.variables():
27 print(f"{var.name}: {var.value()}")
28
29for name, constraint in model.constraints.items():
30 print(f"{name}: {constraint.value()}")
除了突出顯示的行之外,代碼與前面的示例非常相似。以下是差異:
這是解決方案:
status: 1, Optimal
objective: 1800.0
x1: 0.0
x2: 0.0
x3: 45.0
x4: 0.0
y1: 0.0
y3: 1.0
manpower: -5.0
material_a: -55.0
material_b: 0.0
x1_constraint: 0.0
x3_constraint: -55.0
y_constraint: 0.0
事實(shí)證明,最佳方法是排除第一種產(chǎn)品而只生產(chǎn)第三種產(chǎn)品。
就像有許多資源可以幫助您學(xué)習(xí)線性規(guī)劃和混合整數(shù)線性規(guī)劃一樣,還有許多具有 Python 包裝器的求解器可用。這是部分列表:
其中一些庫,如 Gurobi,包括他們自己的 Python 包裝器。其他人使用外部包裝器。例如,您看到可以使用 PuLP 訪問 CBC 和 GLPK。
您現(xiàn)在知道什么是線性規(guī)劃以及如何使用 Python 解決線性規(guī)劃問題。您還了解到 Python 線性編程庫只是本機(jī)求解器的包裝器。當(dāng)求解器完成其工作時(shí),包裝器返回解決方案狀態(tài)、決策變量值、松弛變量、目標(biāo)函數(shù)等。