欧美vvv,亚洲第一成人在线,亚洲成人欧美日韩在线观看,日本猛少妇猛色XXXXX猛叫

新聞資訊

    機器學習背后的術語可能聽起來很復雜,但概念非常直觀

    近幾年,像“機器學習( )”,“深度學習( Deep )”,“神經網絡( )”,“人工智能( )”或“人工智能( A.I )”,“數據科學( Data )”等詞語在科技界已成為流行術語。由于計算能力提高和可用數據量增加,現在可以將已知數十年的科學技術應用到實踐中來。

    但是這些術語究竟是什么意思?

    數學公式讓機器擁有像人類一樣基本的理解能力

    我們大多數人都可以意識到 1 萬多行的解釋說明“全部是為了教電腦去幫助我們解決問題” ,但許多人可能不知道實際發生了什么。機器學習的基礎知識非常簡單,足夠直觀,而且更重要的是,足夠有趣,讓每個人在相對較短的時間內理解它。

    下面我們將簡單介紹如何使用機器學習來教電腦解決問題,是為了針對那些不了解機器學習的人或那些想要從頭開始的人。

    最佳擬合線 (The Line of Best Fit)

    我們中的許多人可能會記得來自學校的一些東西,稱為“最佳擬合線”,參考繪制在圖表上的數據點。最佳擬合線是一條通過這些點的線,它用來表示數據表達的內容。它可能看起來像這樣:

    這個概念實際上是最基本的機器學習。我們可以將數據提供給計算機,而不是自己繪制這些點并嘗試繪制出最佳擬合線。

    例如,可以想象上圖中顯示的數據是一些人的鞋子尺寸和身高。左下角的點表示這個人的身高比其他人矮并且鞋子尺寸比其他人小,右上角的點表示這個人較高且腳較大。因為鞋子的尺寸和高度并不是完全相關,所以不是所有的點都符合“較高的人有較大的腳”的說法,但最適合的線條表明它在一般情況下是正確的。

    機器學習防止過擬合_欠擬合 過擬合_svm中為何能防止過擬合

    通過最佳擬合線,我們可以對新數據做出有根據的猜測。假設你找到了一雙鞋子。您可以確定它的大小,然后參考相關圖表機器學習防止過擬合,對鞋子主人的身高做出有相關的猜測:

    簡單吧?在機器學習中,這被稱為“線性回歸”,不要讓名字嚇到你。如果你了解上述所有內容,那么就會理解線性回歸。這是一種簡單的機器學習技術,用于幫助對具有線性關系的數據進行預測。

    機器學習的線性回歸過程如下:

    收集數據;將數據導入進程序,用線性回歸分析這些數據并畫出最佳擬合線;使用最佳擬合線來預測新數據。

    這些被稱為“機器學習”,因為計算機(或機器)已經學習了(或創建了一個數學公式,在這種情況下,是一條線)怎樣聯系鞋子的尺寸和身高的關系。數學方程使機器基本理解了我們作為人類學到的東西:一般來說,較高的人有較大的腳。

    在其他情況下,你可以根據房子的房間數并用線性回歸來猜測房屋的成本,或根據他們在圣誕樹下有多少禮物來猜測孩子有多少阿姨和叔叔。

    線性回歸問題

    當數據成線性關系時,線性回歸效果顯著,如以上例子。但它處理看起來不成線性關系的數據效果會怎么樣?也許數據看起來像這樣:

    機器學習防止過擬合_欠擬合 過擬合_svm中為何能防止過擬合

    添加最佳擬合線,效果圖如下:

    最佳擬合線匹配數據效果還可以接受,但似乎它可以做得更好。因為數據的形狀不是一條直線,因此繪制的最佳擬合線不適合數據。這是機器學習中的一個問題,稱為“欠擬合”:最佳擬合線并不能很好地擬合數據。但是如果我們彎曲最佳擬合線,它可能會做得更好。

    我們可以輕松利用曲線使數據擬合更準確,上圖方法就像我們用直線的最佳擬合一樣。這是一個簡單的線性回歸擴展,稱為“多項式回歸”。再次,不要讓名字嚇到你。如果你理解為什么曲線擬圖時比直線更有準確,那么你就能理解多項式回歸是如何有用。

    現在我們可以創建一個模型,即:對于具有直線或曲線形狀的數據,找到一組數據的最佳擬合線或曲線。這些內容上面已經介紹了,對吧?但并未結束,我們可以在這些概念之上進行拓展。

    選擇模型的準確度

    多項式回歸的問題是我們必須在使用它之前決定給它的次數(冪的次數),這可能很棘手。讓我們回到我們的第一組數據:

    欠擬合 過擬合_svm中為何能防止過擬合_機器學習防止過擬合

    我們以前使用線性回歸在這些數據點之間畫一條直線。但相反,我們可以使用多項式回歸將最佳擬合曲線放在數據點之間,效果有可能比線性回歸顯著。它可能看起來像這樣:

    關于多項式回歸,我們可以設定最佳擬合曲線的準確度。次數越高,它在描述數據集時就越靈活。上面最合適的曲線非常簡單,但可以進一步擬合數據機器學習防止過擬合,如下所示:

    或者如下圖擬合數據:

    上面的最合適曲線似乎越來越準確地描述數據,但有些東西有點感覺不對,特別是在最后一個例子中。最佳擬合曲線的靈活度越高,它就很難把一些數據點連接起來。結果是一條曲線對于預測而言似乎不如最佳擬合直線。

    我們再次回到鞋子尺寸和高度例子中,我們可以看到兩個不同鞋尺寸的人在最佳擬合曲線中有著相同的身高:

    機器學習防止過擬合_svm中為何能防止過擬合_欠擬合 過擬合

    機器學習中的這個問題被稱為“過度擬合”,與欠擬合相反。這意味著我們創建的最合適的曲線并不能很好的代表整個數據概況。它在連接數據點上面做的不錯,但它無法于對任何新數據做出準確的預測。機器學習的主要問題之一是找到最合適的線條或曲線,其曲率足以模仿數據的一般規律形狀,但不是那么彎曲,以至于無法對新數據進行良好預測。

    這是多項式回歸容易出現的問題。在擬合數據之前我們必須明確多項式回歸使擬合曲線的彎曲程度,這不是一件容易的事情,尤其是當數據更復雜時。

    在到目前為止的示例中,我們的數據只有兩個維度 - 例如鞋子尺寸和身高 - 這意味著我們已經能夠在二維圖上表達我們的數據。二維圖很容易看到數據的一般形狀。但是,在具有兩個以上維度的機器學習問題中通常不會出現這種情況。如果我們不知道數據的形狀是什么,我們就不能準確的確認多項式回歸曲線的次數去制作最合適的線條。

    進一步挖掘,神經網絡也可用于回答關于數據的是與否問題而不是返回數字。

    一種選擇是多次嘗試多項式回歸不同的冪次數據,并觀察哪個次數效果最好。但我們真正需要的是機器學習既可以滿足線性擬合的靈活性,同時也限制它的曲率,以便能夠更好地應用于新數據。

    研究人員通常通過從線性和多項式回歸轉向使用神經網絡來解決曲線靈活性問題 。就其本身而言,神經網絡非常類似于多項式回歸,因為它能夠學習具有非常彎曲形狀的數據。它們并沒有解決自身產生的過度擬合的問題,但當與一種稱為正則化的技術相結合時,一切都趨于成功。

    神經網絡和正則化使用細節對于理解機器學習的基礎知識并不是非常重要。需要記住的關鍵事項是,神經網絡非常擅長學習復雜數據集的形狀 - 比線性或多項式回歸更有效 - 和正則化有助于防止神經網絡過度擬合數據。

    讓電腦回答問題

    svm中為何能防止過擬合_欠擬合 過擬合_機器學習防止過擬合

    對于迄今為止所涉及的技術 - 線性回歸,多項式回歸和神經網絡 - 我們只研究了如何根據我們提供的數據訓練計算機給我們一個數字。鞋子尺寸和身高模型可以告訴我們相應的身高數據根據我們輸入的鞋子尺寸。類似地,根據房間數量的房價模型,我們可以知道房子價格當我們給出了房間數。

    但是數字輸出并不總是我們想要的。有時我們想要機器學習模型來回答問題。例如,如果你想賣房子,你可能不會只關心機器學習計算出你房子的價值,但你可能還想知道房子是否會在六周內售出。

    好消息是許多機器學習技術可以解決回答特定問題而不是給出數字的問題 ,類似于我們已經介紹的技術 。當我們提供一些基本輸入數據(如房間數量,成本和平方英尺)時,可以設置機器學習模型以給出六周內銷售問題的是/否答案。顯然,它永遠不會是一個完美的模型,因為住房市場不遵循確切的規則,但機器學習模型可以給出這些類型問題很精確的答案(取決于數據的質量)。

    對于線性回歸,所涉及的是線性形式的邏輯回歸。(同樣,不要讓術語使你害怕。基本方法實際上非常直觀。)它可以回答諸如“這封垃圾郵件是垃圾嗎?”或“明天會下雨嗎?”。兩種方法 - 線性和邏輯回歸 - 會計算一條最佳擬合線,但它們在使用該線時的方式不同。提醒一下,這里我們使用線性回歸模型是為了預測其它的數據:

    邏輯回歸與之前的方法有些類似,不同的是找到了一條最佳擬合線的同時也將數據分成兩組。然后,該線可用于預測新數據點是位于這個組還是另一個組中,具體取決于它所在線的哪一側。

    像線性回歸一樣,邏輯回歸可以擴展為使用彎曲的多項式模型,該模型在擬合數據形狀方面具有更大的靈活性。通過一點額外的擴展,神經網絡也可用于回答關于數據的是/否問題而不是返回數字。

    如果我們想要回答比尋找是/否更復雜的問題,我們可以使用多項邏輯回歸,或者我們也可以調整神經網絡以便能夠處理這些情況。以這種方式創建的模型將能夠回答諸如“明天會下雨,晴天還是下雪?”這樣的問題。“多項”部分只是意味著答案可以是眾多選項之一。在該示例中,三個可能的答案將是下雨,晴天或下雪。

    雖說上文是滿滿的一篇文字,但是讀了以后更會收獲滿滿,用不了你幾分鐘時間,

    最后小編為大家準備了關于機器學習的資料和視頻教程,如果有讀者需要請私信小編即可獲取!

網站首頁   |    關于我們   |    公司新聞   |    產品方案   |    用戶案例   |    售后服務   |    合作伙伴   |    人才招聘   |   

友情鏈接: 餐飲加盟

地址:北京市海淀區    電話:010-     郵箱:@126.com

備案號:冀ICP備2024067069號-3 北京科技有限公司版權所有